420 research outputs found

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3

    Get PDF
    The tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB). Here, we present biochemical and physiological evidence that CymA interacts with menaquinol (MQH2) substrates. Fluorescence quench titration with the MQH2 analog, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), was used to demonstrate quinol binding of E. coli cytoplasmic membranes enriched with various forms of CymA. Wild-type CymA bound HOQNO with a Kd of 0.1–1 μM. It was also shown that the redox active MQH2 analog, 2,3-dimethoxy-1,4-naphthoquinone (DMNH2), could reduce CymA in cytoplasmic membrane preparations. Based on a CymA homology model made from the NrfH tetraheme cytochrome structure, it was predicted that Lys91 would be involved in CymA-quinol interactions. CymA with a K91Q substitution showed little interaction with HOQNO. In addition, DMNH2-dependent reduction of CymA-K91Q was diminished by 45% compared to wild-type CymA. A ΔcymA ANA-3 strain containing a plasmid copy of cymA-K91Q failed to grow with arsenate as an electron acceptor. These results suggest that Lys91 is physiologically important for arsenate respiration and support the hypothesis that CymA interacts with menaquinol resulting in the reduction of the cytochrome

    Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection

    Get PDF
    Tillering in cereals is a complex process in the regulation of which also signals from the roots in the form of strigolactones play an important role. The strigolactones are signalling molecules that are secreted into the rhizosphere where they act as germination stimulants for root parasitic plants and hyphal branching factors for arbuscular mycorrhizal fungi. On the other hand, they are also transported from the roots to the shoot where they inhibit tillering or branching. In the present study, the genetic variation in strigolactone production and tillering phenotype was studied in twenty rice varieties collected from all over the world and correlated with S. hermonthica infection. Rice cultivars like IAC 165, IAC 1246, Gangweondo and Kinko produced high amounts of the strigolactones orobanchol, 2′-epi-5-deoxystrigol and three methoxy-5-deoxystrigol isomers and displayed low amounts of tillers. These varieties induced high S. hermonthica germination, attachment, emergence as well as dry biomass. In contrast, rice cultivars such as Super Basmati, TN 1, Anakila and Agee displayed high tillering in combination with low production of the aforementioned strigolactones. These varieties induced only low S. hermonthica germination, attachment, emergence and dry biomass. Statistical analysis across all the varieties confirmed a positive correlation between strigolactone production and S. hermonthica infection and a negative relationship with tillering. These results show that genetic variation in tillering capacity is the result of genetic variation in strigolactone production and hence could be a helpful tool in selecting rice cultivars that are less susceptible to S. hermonthica infection

    CD4/CD8 Ratio and the Risk of Kaposi Sarcoma or Non-Hodgkin Lymphoma in the Context of Efficiently Treated Human Immunodeficiency Virus (HIV) Infection: A Collaborative Analysis of 20 European Cohort Studies

    Get PDF
    BACKGROUND: A persistently low CD4/CD8 ratio has been reported to inversely correlate with the risk of non-AIDS defining cancer in people living with human immunodeficiency virus (HIV; PLWH) efficiently treated by combination antiretroviral therapy (cART). We evaluated the impact of the CD4/CD8 ratio on the risk of Kaposi sarcoma (KS) or non-Hodgkin lymphoma (NHL), still among the most frequent cancers in treated PLWH. METHODS: PLWH from the Collaboration of Observational HIV Epidemiological Research Europe (COHERE) were included if they achieved virological control (viral load ≤ 500 copies/mL) within 9 months following cART and without previous KS/LNH diagnosis. Cox models were used to identify factors associated with KS or NHL risk, in all participants and those with CD4 ≥ 500/mm3 at virological control. We analyzed the CD4/CD8 ratio, CD4 count and CD8 count as time-dependent variables, using spline transformations. RESULTS: We included 56 708 PLWH, enrolled between 2000 and 2014. At virological control, the median (interquartile range [IQR]) CD4 count, CD8 count, and CD4/CD8 ratio were 414 (296-552)/mm3, 936 (670-1304)/mm3, and 0.43 (0.28-0.65), respectively. Overall, 221 KS and 187 NHL were diagnosed 9 (2-37) and 18 (7-42) months after virological control. Low CD4/CD8 ratios were associated with KS risk (hazard ratio [HR] = 2.02 [95% confidence interval {CI } = 1.23-3.31]) when comparing CD4/CD8 = 0.3 to CD4/CD8 = 1) but not with NHL risk. High CD8 counts were associated with higher NHL risk (HR = 3.14 [95% CI = 1.58-6.22]) when comparing CD8 = 3000/mm3 to CD8 = 1000/mm3). Similar results with increased associations were found in PLWH with CD4 ≥ 500/mm3 at virological control (HR = 3.27 [95% CI = 1.60-6.56] for KS; HR = 5.28 [95% CI = 2.17-12.83] for NHL). CONCLUSIONS: Low CD4/CD8 ratios and high CD8 counts despite effective cART were associated with increased KS/NHL risks respectively, especially when CD4 ≥ 500/mm3

    Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents

    Get PDF
    Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An “overall sperm quality” parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert

    Imatinib Treatment Induces CD5+ B Lymphocytes and IgM Natural Antibodies with Anti-Leukemic Reactivity in Patients with Chronic Myelogenous Leukemia

    Get PDF
    Imatinib mesylate is a first line treatment of Chronic Myelogenous Leukemia and of a rare form of gastrointestinal stromal cancer, where the response to the drug is also linked to the immune system activation with production of antineoplastic cytokines. In this study, forty patients in the chronic phase of disease, treated with imatinib mesylate, were analyzed. Bone marrow aspirates were drawn at diagnosis, after 3, 6, 12, 18 months for haematological, cytofluorimetric, cytogenetic, biomolecular evaluation and cytokine measurement. Responder and non responder patients were defined according to the European LeukemiaNet recommendations. In responder patients (n = 32), the percentage of bone marrow CD20+CD5+sIgM+ lymphocytes, and the plasma levels of IgM, were significantly higher, at 3 months and up to 9 months, than in non responders. These IgM reacted with O-linked sugars expressed by leukemic cells and could induce tumor cell apoptosis. In responeìder patients the stromal-derived factor-1 and the B-lymphocyte-activating factor of the tumor necrosis factor family significantly raised in the bone marrow after imatinib administration, together with the bone morphogenetic proteins-2 and −7. All patients with high number of CD20+CD5+sIgM+ cells and high stromal-derived factor-1 and B lymphocyte activating factor levels, underwent complete cytogenetic and/or molecular remission by 12 months. We propose that CD20+CD5+sIgM+ lymphocytes producing anti-carbohydrate antibodies with anti-tumor activity, might contribute to the response to imatinib treatment. As in multivariate analysis bone marrow CD20+CD5+sIgM+ cells and stromal-derived factor-1 and B-lymphocyte-activating factor levels were significantly related to cytogenetical and molecular changes, they might contribute to the definition of the pharmacological response

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitor of DNA binding/Inhibitor of differentiation 4 (<it>ID4</it>) is a critical factor for cell proliferation and differentiation in normal vertebrate development. <it>ID4</it> has regulative functions for differentiation and growth of the developing brain. The role of <it>ID1</it>, <it>ID2</it> and <it>ID3</it> are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of <it>ID3</it> expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of <it>ID4</it> in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. </p> <p>Methods</p> <p><it>ID4</it> promoter methylation, <it>ID4</it> mRNA expression and <it>ID4</it> protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of <it>ID4</it> promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of <it>ID4</it> promoter methylation with <it>ID4</it> mRNA and <it>ID4</it> protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between <it>ID4</it> promoter methylation and clinicopathological parameters. </p> <p>Results</p> <p>Frequent <it>ID4</it> promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between <it>ID4</it> promoter methylation and loss of <it>ID4</it> expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with <it>ID4</it> promoter methylation showed distinct loss of <it>ID4</it> expression on both transcription and protein level. Interestingly, <it>ID4</it> promoter methylation was a factor for unfavourable recurrence-free survival (P=0.036) and increased risk for lymph node metastasis (P=0.030). </p> <p>Conclusion</p> <p>ID4 is indeed a novel tumour suppressor gene in normal human breast tissue and is epigenetically silenced during cancer development, indicating increased risk for tumour relapse. Thus, <it>ID4</it> methylation status could serve as a prognostic biomarker in human breast cancer.</p
    corecore